Abstract

A study involving the use of Mg-MeOH for the double reductive cleavage of both N–S and C–S bonds in a series of 11 benzo-fused cyclic sulfonamides is reported. Examples where the sulfonamide nitrogen atom is part of a pyrrolidine ring effectively undergo reduction, as long as a methoxy substituent is not para-positioned in the aromatic ring, relative to the sulfonyl group. In contrast, if the nitrogen atom is contained within an aromatic ring (pyrrole or indole), the presence of a para-methoxy substituent does not prohibit reduction. If deuterated methanol is used, aromatic ortho-deuterium incorporation was observed. To better understand how structure affects reactivity, density functional theory calculations were performed using three functionals. Results using CAM-B3LYP were found to best correlate with experimental observations, and these demonstrate the impact that the different aromatic substitution patterns and types of N-atom have on the lowest unoccupied molecular orbital (LUMO) energies and adiabatic electron affinities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call