Abstract

Signal transducer and activator of transcription 3 (STAT3) is an important mediator of cardiac survival pathways. Reduced levels of STAT3 in patients with end-stage heart failure suggest a clinical relevance of STAT3 deficiency for cardiac disease. The recent identification of STAT3 as a mitochondrial protein which is important for full activity of mitochondrial complex I has opened a new field for the investigation of how STAT3 functions in cardioprotection. The goal of this study was to establish a cell culture model with a reduced STAT3 expression, and to use this model for the investigation of mitochondrial and mitochondrial-associated functions under STAT3 deficiency. In the murine cardiomyogenic cell line HL-1, the expression of STAT3 was silenced by lentiviral transduction with anti-STAT3 shRNA (STAT3 KD cells). STAT3 mRNA and protein levels were significantly reduced in HL-1 STAT3 KD cells compared to HL-1 cells transduced with a control shRNA. Spectrophotometric and polarographic assays with mitochondrial enriched fractions and intact cells showed reduced activities of respiratory chain complexes I, II, III and IV in HL-1 STAT3 KD cells. At ultrastructural level, a severe damage of mitochondrial integrity was observed, combined with a significant increase in autophagolysosomes in STAT3-deficient HL-1 cells. Our results demonstrate that the HL-1 STAT3 KD cell line is a good model to study cellular consequences of STAT3 deficiency. Moreover, this is the first study to show that STAT3 deficiency leads to a disruption of mitochondrial ultrastructure and increased autophagy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call