Abstract
Short duration and high intensity acoustic exposures can lead to temporary hearing loss and auditory nerve degeneration. This study investigates central auditory system function following such acute exposures after hearing loss recedes. Adult rats were exposed to 100 dB sound pressure level noise for 15 min. Auditory brainstem responses (ABRs) were recorded with click sounds to check hearing thresholds. Functional magnetic resonance imaging (fMRI) was performed with tonal stimulation at 12 and 20 kHz to investigate central auditory changes. Measurements were performed before exposure (0D), 7 days after (7D), and 14 days after (14D). ABRs show an ∼6 dB threshold shift shortly after exposure, but no significant threshold differences between 0D, 7D, and 14D. fMRI responses are observed in the lateral lemniscus (LL) and inferior colliculus (IC) of the midbrain. In the IC, responses to 12 kHz are 3.1 ± 0.3% (0D), 1.9 ± 0.3% (7D), and 2.9 ± 0.3% (14D) above the baseline magnetic resonance imaging signal. Responses to 20 kHz are 2.0 ± 0.2% (0D), 1.4 ± 0.2% (7D), and 2.1 ± 0.2% (14D). For both tones, responses at 7D are less than those at 0D (p < 0.01) and 14D (p < 0.05). In the LL, similar trends are observed. Acute exposure leads to functional changes in the auditory midbrain with timescale of weeks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.