Abstract
Functional magnetic resonance imaging is sensitive to signal fluctuations due to physiological motion and system instability. In this paper, motion-related signal fluctuations are studied, and a method that uses navigator echoes to monitor and compensate for signal fluctuations in a gradient-echo sequence is described. The technique acquires a "navigator" signal before the application of the phase-encoding and readout gradients and corrects the phase of the subsequently acquired imaging data. This technique was implemented on a 4 Tesla whole body system and validated on normal volunteers. With this technique, temporal fluctuations in image intensity were substantially reduced and improved functional activation maps were obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.