Abstract
Under anoxic conditions zero-valent iron can react with water to produce hydrogen gas and magnetite or green rust, a highly reactive mineral phase that can induce reduction processes and thus control the speciation, the solubility, toxicity and the mobility of redox sensitive elements in (nuclear) waste repositories. In this study micro X-ray fluorescence (micro-XRF) and micro X-ray absorption spectroscopy (micro-XAS) were used to investigate the speciation of selenium that immobilized in the presence of Fe(0) and an anoxic synthetic groundwater solution. The selenium immobilization was accompanied by the formation of a green rust corrosion layer. Micro-XRF revealed that a Se-rich layer is present along the iron surfaces that were exposed to the Se(IV) solution. Micro-XAS experiments at the Se K-edge showed that Se(]IV) was reduced to elemental Se(O). Thus, the reactivity of zero-valent and green rust should to be considered in assessing the long-term fate of selenium in nuclear waste repositories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.