Abstract

Fermentation metabolites of Diamond V Original XPC™ (XPC), a biological product derived from yeast fermentation, were evaluated for their ability to reduce the Salmonella Typhimurium population using an in vitro mixed anaerobic culture system containing cecal microbiota to simulate chicken hindgut conditions. Four different samples were prepared: anaerobic mixed culture containing (1) feed only, (2) cecal only (ceca were harvested from 42 days old broiler chickens), (3) feed and cecal contents, and (4) feed, cecal contents, and 1% XPC. Two experimental conditions were investigated: Group 1, in which the cecal content was added at the same time as a S. Typhimurium marker strain and Group 2, in which the cecal content was preincubated for 24 h prior to the inoculation with the S. Typhimurium marker strain. The mixed cultures were incubated anaerobically at 37°C, and the S. Typhimurium marker strain was enumerated at 0, 24, and 48 h. Analysis of short chain fatty acids was also conducted for 24 h. In the Group 1 experiment, adding XPC did not exhibit significant reduction of S. Typhimurium. However, the presence of XPC resulted in rapid reduction of S. Typhimurium in Group 2. S. Typhimurium was reduced from 6.81 log10 CFU/ml (0 h) to 3.73 log10 CFU/ml and 1.19 log10 CFU/ml after 24 and 48 h, respectively. These levels were also 2.47 log10 and 2.72 log10 lower than the S. Typhimurium level recovered from the control culture with feed and cecal contents, but without XPC. Based on these results, it appears that the ability of XPC to reduce S. Typhimurium requires the presence of the cecal microbiota. Short chain fatty acid analysis indicated that acetate and butyrate concentrations of cultures containing XPC were twofold greater than the control cultures by 24 h of anaerobic growth. Results from the present study suggest that dietary inclusion of XPC may influence cecal microbiota fermentation and has the potential to reduce Salmonella in the cecum. Implications of these findings suggest that XPC may decrease preharvest levels of Salmonella in broilers and layers.

Highlights

  • Food-borne disease continues to be one of the primary public health concerns throughout the world

  • Our in vitro anaerobic mixed culture experiment was based on the method of Donalson et al The mixed cultures were grown in anaerobic dilution solution (ADS), consisting of 0.45 g/l K2HPO4, 0.45 g/l KH2PO4, 0.45 g/l (NH4)2SO4, 0.9 g/l NaCl, 0.1875 g/l MgSO4-7H2O, 0.12 g/l CaCl2-2H2O, 1 ml/l 0.1% resazurin, 0.05% cysteine-HCl, and 0.4% CO2-saturated sodium carbonate, with the sodium carbonate added last as described previously [24,25,26,27,28,29]

  • Since poultry have a relatively slow digestion transit time, poultry ceca have a large number of bacteria, and the majority of these are strictly anaerobic [27, 31, 32]

Read more

Summary

Introduction

Food-borne disease continues to be one of the primary public health concerns throughout the world. Salmonellosis usually occurs by consumption of foods or water contaminated with Salmonella, and common sources are poultry and poultry products [4], it is essential to control pathogenic Salmonella in poultry products. Because the use of antibiotic growth promoters provoke a negative reaction from many consumers due to public health concerns such as the appearance of antibiotic resistance, the food industry has been searching for effective alternatives to replace antibiotics [5,6,7]. Prebiotics can be defined as non-digestible food ingredients that selectively simulate the growth of beneficial bacteria and/or minimize pathogen growth in the colon, and they are occasionally used in the poultry industries to improve poultry health as a replacement of antibiotic growth promoters [8,9,10,11]

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call