Abstract

Laser pulses which selectively damage pigmented hair follicles are a useful treatment for hypertrichosis. Clinically, regrowing hairs are often thinner and lighter after treatment. In this study, hair shaft diameter and optical transmission (700 nm) were measured before and after ruby (694 nm) and diode (800 nm) laser irradiation. Hair was collected from 47 and 41 subjects treated with ruby (0.3 ms and 3 ms) and diode (10-20 ms) lasers, respectively. "Responders" were defined as subjects with significant long-term hair loss as determined by hair counts at 9 and/or 12 months after treatment. In ruby laser responders (34/47), regrowing hairs were significantly both thinner (decreased diameter) and lighter (increased transmission). In "nonresponders" (13/47), regrowing hairs were lighter, but not thinner. The regrowing hair shaft absorption coefficient (as calculated assuming Beer's law) was significantly decreased by 0.3 ms ruby laser treatment, but was not changed by 3 ms ruby laser or diode laser treatment. After diode laser treatment, 38 of the 41 subjects were responders and regrowing hairs were both thinner and lighter. These results show that laser treatments can affect structural recovery (size of hair), follicular pigmentation (hair absorption coefficient), or both. Regrowth of thinner hair (decreased shaft diameter) occurs in conjunction with actual loss of hair. After long pulses (3 ms ruby; diode), regrowing hair was thinner and also lighter to an extent related to the decrease in hair diameter. In contrast, short ruby laser pulses (0.3 ms) appeared to be capable of inhibiting follicular pigmentation per se, in addition to affecting the hair diameter. This may account for the complete regrowth of lighter hair in "nonresponders" treated with 0.3 ms pulses. Laser-induced reduction in hair diameter and/or pigmentation are both long-term responses which confer cosmetic benefits in addition to actual hair loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.