Abstract

Through the use of N series-connected quartz crystal resonators in an oscillator circuit, a 10 log N reduction in both flicker-of-frequency noise and white phase-noise (floor) levels has been demonstrated. The reduction in flicker noise occurs as a result of the uncorrelated short-term frequency instability in each of the resonators, and the reduction in noise floor level is a simple result of the increase in net, allowable crystal drive level. This technique has been used in 40-, 80-, and 100-MHz AT-, BT-, and SC-cut crystal oscillators using low flicker-of-phase noise modular amplifier sustaining stages, and four series connected crystals. Total (four crystal) power dissipations of up to 30 mW have been utilized. State-of-the-art, flicker-of-frequency noise levels have been obtained with noise-floor levels (80 MHz) as low as -180 dBc/Hz. Four- to five-fold reduction in acceleration sensitivities has been determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call