Abstract

The viscoelasticity effects on the reaction-diffusion rates in a Y-shaped microreactor are studied utilizing the PTT rheological model. The flow is assumed to be fully developed and considered to be created under a combined action of electroosmotic and pressure forces. In general, finite-volume-based numerical simulations are conducted to handle the problem; however, analytical solutions based on the depthwise averaging approach are also obtained for the case for which there is no reaction between the inlet components. The analytical solutions are found to predict accurate results when the width to height ratio is at least 10 and acceptable results for lower aspect ratios. An investigation of the viscoelasticity effect reveals that it is accompanied by a significant reduction of the production rate and the production efficiency, defined as the ratio of the average product concentration to the inlet concentration of the limiting reactant. In addition, this effect gives rise to a more uniform transport with more symmetric concentration distributions. The pressure effects on the reaction-diffusion rates are also pronounced in the presence of viscoelasticity. Finally, the influences of the product diffusivity are investigated for the first time revealing that the lower it is the thinner the area of significant production becomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.