Abstract

Phosphorylated histone H3 at serine 10 and serine 28 (H3Ser10 and H3Ser28) have been recognized as cell cycle markers to evaluate the late-G(2)/M status of cell and tissue samples. I report about the reduction phenomena of H3Ser10 and Ser28 phosphorylation (H3Ser10P and 28P) at the late-G(2) through M cell cycle phases in association with DNA damage caused by hydrogen peroxide (H(2)O(2)). The levels of H3Ser10P and Ser28P decreased between 15 and 60 min after H(2)O(2) addition in an inverse correlation manner with H2AX Ser139 phosphorylation (gammaH2AX). Experiments using wortmannin suggested that the reduction events of H3Ser10P/28P are under the control of phosphatidylinositol 3-kinase-like kinases. Fluorescence microscopic observation showed that H3Ser10 and Ser28 on telomeric portions of condensed M-phase chromosomes retained their strongly phosphorylated status even after 60 min of H(2)O(2) treatment. In addition, these chromosome parts were poorly gammaH2AX positive showing mutually exclusive distribution patterns between H3Ser10P/28P and gammaH2AX. Considering these data, I hypothesize that the reduction of the H3Ser10P/28P is a part of the DNA damage response processes. It is advisable to pay careful attention to these phenomena at the time of designing cell cycle assay protocols with H3Ser10P or Ser28P mitosis markers when DNA damaging process is expected to occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.