Abstract

Cathodic reduction of oxygen and hydrogen peroxide on amalgamated platinum electrodes, which are coated with monolayers of long-chain aliphatic compounds cetyl alcohol (CA) and stearic acid (SA), is retarded as compared with the same reactions on clean mercury (or amalgam) surface. The oxygen reduction kinetics differ from that on mercury. The difference is explained by that oxygen diffuses into the monolayer and is reduced in it at a certain distance from the metal surface and only at the limiting current the reaction is forced onto the monolayer surface. In contrast to the oxygen reduction, the hydrogen peroxide reduction kinetics on electrodes with SA and CA monolayers is much closer to that on mercury, but with some quantitative distinctions. All results favor the H2O2 reduction at the monolayer/solution interface. The difference in the behavior of O2 and H2O2 is explained by different polarity of these molecules: it is significantly more difficult to penetrate the hydrocarbon monolayer for polar H2O2 molecule than for nonpolar O2 molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call