Abstract

In this paper, a simple and computationally low-cost modification of the standard finite-difference time-domain (FDTD) algorithm is presented to reduce numerical dispersion in the algorithm. Both two- and three-dimensional cases are considered. It is shown that the maximum error in phase velocity can be reduced by a factor of 2-7, depending on the shape of the FDTD cell. Although the reduction procedure is optimal for only single frequency, numerical examples show that the proposed method can also improve the accuracy significantly in wide-band inhomogeneous problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.