Abstract

Numerical and experimental investigations are conducted to assess the benefits and drawbacks of both water (mist) and steam direct injection within the combustion chamber of a 200 N static thrust turbojet. For this purpose, a three-dimensional CFD model of the combustion process is implemented where pollutant emissions are calculated; in parallel, a test campaign on the turbojet at sea level static conditions is carried out. In both cases the refrigerant flow is injected directly into the combustor, outside the liner. The aim of the investigations is to evaluate the impact of increasing water and steam flows (ranging from 0% to 200% of the fuel mass flow) onto the emissions levels (NO and CO) of the engine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.