Abstract

Survival of brain anoxia during months of winter dormancy by the Western painted turtle, Chrysemys picta, may rely on inactivation of neuronal ion channels. During 2 h of anoxia, Ca2+ influx via the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor decreases 30-40%, but it is not known if prolonged anoxic dormancy is associated with even more profound downregulation of this important channel. Because ionized Ca2+ in cerebrospinal fluid (CSF) increases five- to sixfold during prolonged anoxia, the potential for uncontrolled Ca2+ influx and neurotoxicity is increased. To study the regulation of NMDA receptor activity, we measured NMDA-mediated changes in intracellular Ca2+ (NMDA-DeltaCa2+) in turtle cerebrocortical sheets with fura 2. Turtles were kept in N2-bubbled aquariums for 2 h to 6 wk at 2-3 degrees C. NMDA-DeltaCa2+ decreased 60 +/- 14% (P < 0.05) after 2 h of anoxia and did not decrease further for 6 wk. Intracellular Ca2+ increased from 135 to 183 nM (P < 0.05) after 3 wk of anoxia and thereafter returned toward preanoxic levels. When NMDA receptor activity was assessed in artificial CSF containing the ions found in anoxic brain CSF (pH 7. 25, 69 mM lactate, 8.4 mM Ca2+, and 5.1 mM Mg2+), NMDA-DeltaCa2+ was twice control initially but was 21% less than in normoxic artificial CSF after the end of 6 wk, suggesting altered sensitivity of the NMDA receptor to ionized Ca2+ during prolonged anoxia. Regulation of NMDA receptor activity in turtle cerebrocortex during 6 wk of anoxia thus results in depression of NMDA receptor Ca2+ flux, despite a sixfold increase in ionized extracellular Ca2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.