Abstract

Nitrous oxide (N2O) emission from denitrification in agricultural soils often increases with nitrogen (N) fertilizer and soil nitrate (NO3−) concentrations. Our hypothesis is that legume cover crops can improve efficiency of N fertilizer and can decrease N2O emissions compared to non–cover crop systems. The objectives of this study were to (a) evaluate the performance of summer leguminous cover crops in terms of N uptake and carbon (C) accumulation following winter wheat and (b) to quantify the effects of summer leguminous cover crops and N fertilizer rates on N2O emissions and grain yield of the subsequent grain sorghum crop. Field experiments were conducted in the context of a wheat-sorghum rotation for two seasons in Kansas. Treatments consisted of double-cropped leguminous cover crops following winter wheat harvest with no fertilizer applied to the following grain sorghum or no cover crop after wheat harvest and N fertilizer rates applied to the grain sorghum. The cover crops were cowpea (Vigna unguiculata L. Walp.), pigeon pea (Cajanus cajan L. Millsp.), and sunn hemp (Crotalaria juncea L.). The three N treatments (were 0, 90, and 180 kg·N·ha−1). Fallow systems with 90 and 180 kg·N·ha−1 produced significantly greater N2O emissions compared with cropping systems that received no N fertilizer. Emissions of N2O were similar for various cover crops and fallow systems with 0 kg·N·ha−1. Among cover crops, pigeon pea and cowpea had greater C accumulation and N uptake than sunn hemp. Grain yield of sorghum following different cover crops was similar and significantly higher than fallow systems with 0 kg·N·ha−1. Although fallow systems with 90 and 180 kg·N·ha−1 produced maximum sorghum grain yields, N2O emissions per unit of grain yield decreased as the amount of N fertilizer was reduced. We conclude that including leguminous cover crops can decrease N fertilizer requirements for a subsequent sorghum crop, potentially reducing N2O emissions per unit grain yield and providing options for adaptation to and mitigation of climate change.

Highlights

  • One of the challenges for agriculture is to minimize nitrogen (N) losses to the environment while maintaining adequate N supply for high cash crop yields [1]

  • Of particular environmental concern are emissions of nitrous oxide (N2O), a greenhouse gas (GHG) from agricultural soils that contributes to global warming and ozone destruction

  • Everest rotated with grain sorghum hybrid DKS54-00 and N fertilizer rates applied to the grain sorghum

Read more

Summary

Introduction

One of the challenges for agriculture is to minimize nitrogen (N) losses to the environment while maintaining adequate N supply for high cash crop yields [1]. These losses are primarily the result of timing asynchrony of the supply or availability of nitrogen and crop demand along with environmental factors. Decreasing N2O emissions from field-crop soils is necessary from an environmental quality perspective, and an agro-economic perspective, because it decreases the efficacy of expensive applied N fertilizers. Developing crop and soil management practices for efficient use of N and to minimize N2O emissions is important. Use of summer legume cover crops in the farming systems is one such management practice to improve soil health, reduce environmental pollution, and improve crop yields [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.