Abstract
A novel approach is proposed to mitigate the multipath effect, considered a major source of error in global navigation satellite system (GNSS) positioning in urban areas. We utilize code pseudorange acceleration measurements as a weight in a least squares estimation process. If GNSS signals are reflected off a surrounding surface, they cause large variations in the recorded pseudorange measurement. Accelerations computed at each epoch with three consecutive pseudoranges exhibit significant fluctuations in a multipath signal. As a result, positioning accuracy improved by 75% horizontally and 79% vertically compared to not applying any weight. Even when multipath errors exist, the range acceleration (RA) value is sometimes low at many epochs. When a threshold value for the signal-to-noise ratio was additionally applied besides RA, the positioning accuracy at two test sites (including a deep urban environment) improved by more than 80% in both horizontal and vertical directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.