Abstract

Metallic molybdenum was synthesized through reduction of molybdenum trioxide (MoO3) by using hydrogen as a reducing agent. The reduction behavior of MoO3 were investigated by using temperature programmed reduction (TPR). The reduced phases were characterized by X-ray diffraction spectroscopy (XRD). The XRD results indicate that the reduction of MoO3 proceed in two steps reduction (MoO3 → MoO2 → Mo) with formation of intermediate phases of Mo4O11 during first step of reduction. However, the TPR results showed only one broad peak that correspond to all reduction step that was merge into one peak. It seem that, increasing the temperature cause the rapid reduction that correlated with thermodynamic consideration data that show the formation of metallic molybdenum is become feasible by increasing the temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call