Abstract
We develop a reduction scheme for the $L_\infty$-algebra of observables on a premultisymplectic manifold $(M,\omega)$ in the presence of a compatible Lie algebra action $\mathfrak{g}\curvearrowright M$ and subset $N\subset M$. This reproduces in the symplectic setting the Poisson algebra of observables on the Marsden-Weinstein-Meyer symplectic reduced space, whenever the reduced space exists, but is otherwise distinct from the Dirac, Śniatycki-Weinstein, and Arms-Cushman-Gotay observable reduction schemes. We examine various examples, including multicotangent bundles and multiphase spaces, and we conclude with a discussion of applications to classical field theories and quantization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.