Abstract

BackgroundIron-overload is one of the risk factors in susceptible individuals. Iron-overload causes complications such as diastolic dysfunction, arrhythmias, ventricular dilation, and systolic dysfunction in the heart. Therefore, particular care is needed for those who need blood transfusions or patients with underlying heart diseases. Purpose: In this study, we examined the ability of five compounds, hesperidin, coumarin, caffeic acid, ferulic acid, and vanillin, to reduce the effects of iron-overdose in the heart of iron-overloaded mice. Methods: For this purpose, 84 mice were prepared and except for the control group, iron-overload conditions were created in them by injecting iron. The hearts of mice were then harvested and the activities of the antioxidant enzymes catalase and superoxide dismutase were evaluated. Additionally, the amount of lipid peroxidation was measured by assessing the quantity of malondialdehyde. The physiopathology of cardiac tissue was considered by Perl's and H&E staining. Results: According to the results, almost all natural compounds showed better performance than desferal, as an iron chelator chemical. Meanwhile, hesperidin, vanillin, and ferulic acid were the best antioxidant compounds and were able to improve the activity of antioxidant enzymes by reducing the amount of deposited iron. Conclusion: We recommend the use of the above compounds as natural iron chelators after completing additional studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.