Abstract

This paper studies the expanding plasma dynamics of ions produced from a 5J Z-pinch xenon light source used for extreme ultraviolet (EUV) lithography. Fast ion debris produced in such plasmas cause damage to the collector mirror surface. Because of the great degree of erosion and the change in surface roughness properties, the reflectivity of EUV light at 13.5 nm drops drastically. Reducing ion energies and stopping the ion flux are a potential solution toward the success of EUV lithography. Ion energies are measured in kiloelectronvolt range using a spherical sector electrostatic energy analyzer. Preliminary computational work indicates that the observed high energies of ions are probably resulting from Coulomb explosion initiated by pinch instability. Mixed fuel experiments are performed using a mixture of Xe, N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , and H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> . The average energy of the expelled Xe ions is significantly decreased if the mobile lighter gas species are present in the main fuel. The magnitude of the Xe ion signal is reduced as well. This reduction in the quantity of heavy ions and their energy could greatly extend the lifetime of the collector optics used in EUV lithography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.