Abstract

The production of plastic optics creates great challenges for the injection moulding process. The lens geometry is designed to fulfil the optical requirements and often contradict the plastic design guidelines. Especially thick-walled lenses with changes in wall thickness are challenging not only in the classic injection moulding process but also in injection-compression moulding processes, as the compression pressure can lead to internal stresses and thus to reduced optical properties. In order to increase the optical performance of thick-walled plastic lenses, a methodology developed at the Institute of Plastics Processing is being adapted for the inverse calculation of the cooling requirements of plastic components. Based on this, a cooling channel design is derived and validated in injection moulding simulations. With this method, lower peak values of residual stress and birefringence can be achieved. Furthermore, it can be shown that the developed cooling channel layout significantly reduces the cooling time required to reach the glass transition temperature.KeywordsInjection mouldingCooling channel designPlastic optics

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call