Abstract

The goal of this study was to investigate the effects of silencing HIF-1 alpha gene expression with specific small interfering RNA (siRNA) on VEGF production and angiogenesis in epithelial ovarian cancer (EOC) cells. Two EOC cell lines, MDAH-2774 and SKOV-3, were cultured under normoxic (20% O(2)) and hypoxic (2% O(2)) conditions using standard techniques. After EOC cells were transfected with siRNA, HIF-1 alpha and VEGF mRNA levels were measured by real-time RT-PCR. Angiogenesis was evaluated utilizing an in vitro assay model consisting of human umbilical vein endothelial cells (HUVEC) and polymerized ECM Matrix. Both EOC cell lines evaluated constitutively expressed HIF-1 alpha and VEGF mRNA. HIF-1 alpha and VEGF mRNA levels were significantly increased in response to hypoxia (P<0.05). Under hypoxic conditions, inhibition of HIF-1 alpha gene expression by a specific siRNA resulted in a significant reduction in HIF-1 alpha and VEGF mRNA levels (P<0.05). In the in vitro angiogenesis model, supernatant from the hypoxic EOC cells induced the HUVEC to form a complex tubular network, a hallmark of angiogenesis. Semi-quantitative analysis of the angiogenesis assay revealed a significant reduction in tube formation when supernatant from HIF-1 alpha siRNA-treated hypoxic EOC cell was used (P<0.05). Inhibition of HIF-1 alpha expression by specific siRNA resulted in a significant decrease in VEGF production and angiogenesis. Further investigation of HIF-1 alpha inhibition for anti-tumor activity is warranted and may potentially prove HIF-1 alpha as a therapeutic target in the management ovarian cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call