Abstract

PurposeHirschsprung associated enterocolitis (HAEC) is the most common cause of morbidity and mortality in Hirschsprung Disease (HSCR). The pathogenesis of HAEC is poorly understood. In recent years, there is increasing evidence that a compromised intestinal barrier function plays a major role in the pathogenesis of HAEC. Hydrogen sulfide, synthesized from L-cysteine by two key enzymes, cystathionine-β-synthase (CBS) and cystathionine-γ-lysase (CSE) is reported to play a key role in regulating gastrointestinal motility and promoting resolution of inflammation. We designed this study to test the hypothesis that CBS and CSE expression is altered in the colon of patients with HSCR. MethodsWe investigated CBS and CSE protein expression in both the aganglionic and ganglionic regions of HSCR patients (n=10) versus healthy control colon (n=10). Protein distribution was assessed by using immunofluorescence and confocal microscopy. Gene and protein expression was quantified using quantitative real-time polymerase chain reaction (qPCR), Western blot analysis, and densitometry. Main resultsqPCR and Western blot analysis revealed that CBS and CSE are expressed in the normal human colon. CBS and CSE expression was significantly decreased (p<0.003) in the ganglionic and aganglionic bowel in HSCR compared to controls. Confocal microscopy revealed that CBS and CSE expression in smooth muscles, interstitial cells of Cajal, platelet-derived growth factor-alpha receptor-positive cells, enteric neurons and colonic epithelium was markedly decreased in HSCR specimens compared to controls. ConclusionWe demonstrate for the first time the expression and distribution of CBS/CSE in patients with HSCR. The observed decreased expression of CBS and CSE may affect mucosal integrity and colonic contractility and thus render HSCR patients more susceptible to develop HAEC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.