Abstract

An acute injection of brain-derived neurotrophic factor (BDNF) in the hypothalamic ventromedial nucleus (VMN) decreases body weight by reducing feeding and increasing energy expenditure (EE) in animals on standard laboratory chow. Animals have divergent responses to high-fat diet (HFD) exposure, with some developing obesity and others remaining lean. In the current study, we tested the hypothesis that BDNF in the VMN reduces HFD-induced obesity. Seventy-two 10-week old rats were allowed HFD ad libitum for 8 weeks and then prepared with bilateral VMN cannulae. Animals were then divided into tertiles based on their fat mass rank: high, intermediate, and low (H, I, and L). Each group was further divided into two subgroups: BDNF (1 μg) or control (artificial cerebrospinal fluid, aCSF); they were then injected every other day for 20 days according to subgroup. Energy intake, body weight, and body composition were measured. Other metabolic indexes were measured before and after treatment. In parallel, another 12 rats were fed control diet (CD), VMN-cannulated, and injected with aCSF. HFD exposure induced obesity in the H group, with a significant increase in energy intake, body weight, fat mass, liver size, and serum glucose, insulin, and leptin. BDNF significantly reduced body weight and fat mass in all phenotypes, while it reduced energy intake only in the I group. However, BDNF increased EE, spontaneous physical activity, and fat oxidation in the H group, suggesting that BDNF-induced EE elevation contributed to reduction of body weight and fat mass. Chronic VMN BDNF reduced insulin elevation and/or reversed hyperleptinemia. These data suggest that the VMN is an important site of action for BDNF reduction of HFD-induced obesity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.