Abstract

Intracellular glucocorticoid (GC) receptor (GR) function determines tissue sensitivity to GCs and strongly affects the development of type 2 diabetes and obesity. 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) mediates intracellular steroid exposure to mouse liver GR by prereceptor reactivation of GCs and is crucially dependent on hexose-6-phosphate dehydrogenase (H6PDH)-generating NADPH system. Pharmacological inhibition of 11beta-HSD1 improves insulin intolerance and obesity. Here, we evaluated the potential beneficial effects of 11beta-HSD1 inhibitor carbenoxolone (CBX) in diet-induced obese (DIO) and insulin-resistant mice by examining the possible influence of CBX on the expression of GR, 11beta-HSD1, and H6PDH in vivo and in vitro in hepatocytes. Treatment of DIO mice with CBX markedly reduced hepatic GR mRNA levels and reduced weight gain, hyperglycemia, and insulin resistance. The reduction of hepatic GR gene expression was accompanied by CBX-induced inhibition of both 11beta-HSD1 and H6PDH activity and mRNA in the liver. Moreover, CBX treatment also suppressed the expression of both phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase enzyme (G6Pase) mRNA and improved hepatic [1, 2-(3)H] deoxy-d-glucose uptake in DIO mice. In addition, the treatment of primary cultures of hepatocytes with increasing concentrations of CBX led to a dose-dependent downregulation of GR mRNA levels, which correlated with the suppression of both 11beta-HSD1 and H6PDH activity and their gene expression. Addition of CBX to primary hepatocytes also resulted in suppression of both PEPCK and G6Pase mRNA levels. These findings suggest that CBX exerts some of its beneficial effects, at least in part, by inhibiting hepatic GR and H6PDH expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.