Abstract

Reduction of the interfacial friction for the contact of a silicon oxide surface with sodium borosilicate in aqueous solutions has been accomplished through the adsorption of poly(L-lysine)-graft-poly(ethylene glycol) on one or both surfaces. Spontaneous polymer adsorption has been achieved via the electrostatic attraction of the cationic polylysine polymer backbone and a net negative surface charge, present for a specific range of solution pH values. Interfacial friction has been measured in aqueous solution, in the absence of wear, and on a microscopic scale with atomic force microscopy. The successful investigation of the polymer-coated interfaces has been aided by the use of sodium borosilicate microspheres (5.1 microm diameter) as the contacting probe tip. Measurements of interfacial friction as a function of applied load reveal a significant reduction in friction upon the adsorption of the polymer, as well as sensitivity to the coated nature of the interface (single-sided versus two-sided) and the composition of the adsorbed polymer. These measurements demonstrate the fundamental opportunity for lubrication in aqueous environments through the selective adsorption of polymer coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.