Abstract

A two-dimensional numerical simulation is performed to investigate the drag reduction and vortex shedding suppression behind three square cylinders with attached splitter plates in the downstream region at a low Reynolds number (Re = 150). Numerical calculations are carried out using the lattice Boltzmann method. The study is carried out for various values of gap spacing between the cylinders and different splitter plate lengths. The vortices are completely chaotic at very small spacing, as observed. The splitter plates are critical in suppressing shedding and reducing drag on the objects. The splitter plates with lengths greater than two fully control the jet interaction at low spacing values. There is maximum percentage reduction in CDmean for small spacing and the selected largest splitter plate length. Furthermore, systematic investigation reveals that splitter plates significantly suppress the fluctuating lift in addition to drastically reducing the drag.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call