Abstract

In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the integration-by-part (IBP) method in the momentum space. Tensor integrals can directly be parametrized without performing tensor reductions. The integrands of parametric integrals are functions of Lorentz scalars, instead of four momenta. The complexity of a calculation is determined by the number of propagators that are present rather than the number of all the linearly independent propagators. Furthermore, the symmetries of Feynman integrals under permutations of indices are transparent in the parametric representation. Since all the indices of the propagators are nonnegative, an algorithm to solve those identities can easily be developed, which can be used for automatic calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.