Abstract

In this study, the effect of soluble polysaccharides (SPs) derived from agricultural waste, rice straw, on fermentation-associated stresses (temperature and concentrations of glucose and ethanol) was investigated to achieve high-performance ethanol production. The increase in temperature and concentrations of glucose and ethanol significantly inhibited Saccharomyces cerevisiae growth and lowered ethanol fermentation efficiency. Flow cytometric assays indicated that SPs could alleviate membrane permeability damage caused by fermentation-associated stresses. Atomic force microscopy and transmission electron microscopy revealed that fermentation-associated stresses induced cell surface shrinkage, causing a decrease in the cell size, whereas SPs stimulated the formation of extracellular matrices (EMs), which made the cell surface smooth and the cell morphology regular. Cells with EMs induced by SPs could efficiently produce ethanol under severe stresses. As a result, the titer of ethanol in the fermentation with SPs was 1.40-fold (from 26.40 to 36.98 g/L) higher than that in the fermentation without SPs, suggesting the stress-alleviating effect of SPs on ethanol production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call