Abstract
Recently, many blast furnaces have increased pulverized coal injection. Unburnt coal char is generated from pulverized coal injection and a portion of it remains in the slag. This interferes with tapping by increasing slag viscosity, and can make blast furnace operation unstable. Reduction of FeO with different types of coal was measured in simulated blast furnace slags at 1450°C, using a constant volume pressure increase (CVPI). The reaction rate of FeO was observed to be independent of the type of coal used regardless of different components such as volatile matter and ash. The measured rates at 1.0% and 3.0% of FeO in the slag were 2.77 × 10 -7 and 1.58 × 10 -8 mol/cm 2 s respectively. The overall rate is controlled by a series of processes such as the reaction of CO 2 with C, CO with FeO in slag, liquid phase mass transfer of FeO in the slag, and gas phase mass transfer. For low FeO contents, when the gas evolution rate is low, liquid phase mass transfer is the primarily controlling mechanism. A model to predict the amount of char in the slag at tap based on these results is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.