Abstract

Biological reduction of Fe(III)EDTA is one of the key steps in nitrogen oxides removal in the integrated approach of metal chelate absorption combined with microbial reduction. Paracoccus denitrificans ZGL1 was used as a model bacterium to evaluate the process of Fe(III)EDTA reduction by such microorganisms that could carry out the simultaneous reduction of NO chelated by Fe(II)EDTA (Fe(II)EDTA-NO) and Fe(III)EDTA. Enzymes analysis indicated Fe(III)EDTA reductase of ZGL1 was located both in the membrane and cytoplasmic fractions. Glucose was identified as the most efficient electron donor for Fe(III)EDTA reduction. Better reduction performance was obtained with higher initial cell concentration corresponding to a specific reduction rate of 8.7μmolh−1mgprotein−1. The presence of sulfate and thiosulfate had no influences on both cell growth and Fe(III)EDTA reduction. Fe(III)EDTA reduction rate and cell growth could be inhibited by addition of sulfite mainly due to its direct and indirect toxic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.