Abstract

The frequency drifts of the probe laser could be coupled into the calibrated scale factor of the optically pumped magnetometer (OPM) and induce an error of the measurement accuracy. We propose a method to reduce the far off-resonance laser frequency drifts based on the second harmonic of the electro-optic modulator (EOM) detection system in the all-optical K-Rb hybrid pumping magnetometer. Adopting the closed-loop feedback by monitoring the second-harmonic component in real time, the frequency drift of the probe laser has been effectively reduced by about five times to ∼30 MHz/0.5 h at the detuning of 130 GHz and the cell temperature of 443 K. Besides, this technique has been demonstrated to be helpful for reducing the frequency drifts at different detuning points and temperatures. This method is not only suitable for the development of more compact, high-sensitivity OPMs due to the long-term stability improvement with no extra optical path, but also can be applied to other atomic devices and EOM detection systems for reducing the influence of the laser.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.