Abstract

The reduction of duroquinone (DQ), 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB), and dichlorophenol indophenol (DCIP) by succinate and NADH was investigated in yeast mitochondria which have no spectrally detectable cytochrome b. Succinate reduces DB in the cytochrome b-deficient mitochondria at rates comparable to that observed in wild-type mitochondria, suggesting that succinate:ubiquinone oxidoreductase is unaffected by the lack of cytochrome b. In the mutant mitochondria, succinate does not reduce DQ or DCIP at significant rates; however, NADH reduces both DQ and DCIP at rates similar to that of the wild-type mitochondria in a myxothiazol, but not antimycin, sensitive reaction. The Ki for myxothiazol in this reaction is close to that for electron transfer through the cytochrome b-c1 complex. In addition, myxothiazol does not inhibit NADH:ubiquinone oxidoreductase. These results confirm our previous suggestion that the cytochrome b-c1 complex is involved in electron transfer from the primary dehydrogenases to DQ and DCIP and suggest that cytochrome b is not the binding site for myxothiazol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.