Abstract
This paper presents measurements of the enhanced current density along the edges of a large area electron beam as well as successful techniques that eliminated this edge effect/beam halo. The beam current is measured with a Faraday cup array at the anode, and the spatial, time-integrated current density is obtained with radiachromic film. Particle-in-cell simulations support the experimental results. Experiments and simulations show that recessing the cathode reduces the electric field at the edge and eliminates the edge effect. However, the cathode recess structure itself emits under long-term repetitive operation. In contrast, using a floating, metallic, electric field shaper that is electrically insulated from the cathode eliminates the beam halo and mitigates electron emission from its surface during repetitive operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.