Abstract

In this paper, we make partial progress on a function field version of the dynamical uniform boundedness conjecture for certain one-dimensional families ${\mathcal{F}}$ of polynomial maps, such as the family $f_{c}(x)=x^{m}+c$, where $m\geq 2$. We do this by making use of the dynatomic modular curves $Y_{1}(n)$ (respectively $Y_{0}(n)$) which parametrize maps $f$ in ${\mathcal{F}}$ together with a point (respectively orbit) of period $n$ for $f$. The key point in our strategy is to study the set of primes $p$ for which the reduction of $Y_{1}(n)$ modulo $p$ fails to be smooth or irreducible. Morton gave an algorithm to construct, for each $n$, a discriminant $D_{n}$ whose list of prime factors contains all the primes of bad reduction for $Y_{1}(n)$. In this paper, we refine and strengthen Morton’s results. Specifically, we exhibit two criteria on a prime $p$ dividing $D_{n}$: one guarantees that $p$ is in fact a prime of bad reduction for $Y_{1}(n)$, yet this same criterion implies that $Y_{0}(n)$ is geometrically irreducible. The other guarantees that the reduction of $Y_{1}(n)$ modulo $p$ is actually smooth. As an application of the second criterion, we extend results of Morton, Flynn, Poonen, Schaefer, and Stoll by giving new examples of good reduction of $Y_{1}(n)$ for several primes dividing $D_{n}$ when $n=7,8,11$, and $f_{c}(x)=x^{2}+c$. The proofs involve a blend of arithmetic and complex dynamics, reduction theory for curves, ramification theory, and the combinatorics of the Mandelbrot set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.