Abstract

Owing to the unique structural, electronic, and physico-chemical properties, molybdenum clusters are expected to play an important role in future nanotechnologies. However, their ground states are still under debate. In this study, the crystal structure analysis by particle swarm optimization (CALYPSO) approach is used for the global minimum search, which is followed by first-principles calculations, to detect an obvious dimerization tendency in Mon (n = 2−18) clusters when the 4s and 4p semicore states are not regarded as the valence states. Further, the clusters with even number of atoms are usually magic clusters with high stability. However, after including the 4s and 4p electrons as valence electrons, the dimerization tendency exhibits a drastic reduction because the average hybridization indices Hsp, Hsd, and Hpd are reduced significantly. Overall, this work reports new ground states of Mon (n=11, 14, 15) clusters and proves that semicore states are essential for Mon clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.