Abstract

We have investigated the effect of glutathione peroxidase (GSH-Px) and mammalian erythrocytes (RBCs) on spontaneous and diepoxybutane (DEB)-induced sister chromatid exchange (SCE) in primary Big Blue® mouse (BBM1) and Big Blue® rat (BBR1) fibroblasts. DEB is the putative carcinogenic metabolite of 1,3-butadiene (BD) for which inhalation exposure yields a high rate of malignancies in mice but not in rats. BD is metabolized differently in mice and rats, producing much higher levels of DEB in mice than in rats, which may partly explain the different carcinogenic responses. However, other factors may contribute to the observed differences in the rodent carcinogenic response to BD. DEB is a highly reactive compound. Upon epoxide hydrolysis, DEB can covalently bind to DNA bases. Likewise, DEB generates reactive oxygen species that, in turn, can either damage DNA or produce H 2O 2. Reduced glutathione (GSH) is known to play a role in the metabolism and detoxification of DEB; and GSH is reduced by GSH-Px in the presence of H 2O 2. GSH-Px is a constitutive enzyme that is found at high concentrations in mammalian RBCs. Therefore, we were interested in examining the role of RBCs and GSH-Px on DEB-induced SCE in rat and mouse cells for detection of possible differences in the species response. Transgenic BBM1 and BBR1 fibroblasts were treated with either 0, 2 or 4 μM DEB plus 0, 2 or 20 units of GSH-Px with and without 2×10 8 species-specific RBCs. DEB effectively induced SCEs in both rat and mouse cells. The relative induction of SCEs in both cell types was comparable. Both GSH-Px and RBCs alone and in combination were effective in significantly reducing DEB-induced SCEs in both mouse and rat fibroblasts, although there was more variability in the SCE response in rat cells. The present study suggests that GSH-Px may be important in the detoxification of DEB-induced DNA damage that results in the formation of SCEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call