Abstract

An abnormal sub-threshold leakage current is observed at high temperature in amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs). This phenomenon occurs due to a reduced number of defects in the device's a-IGZO active layer after the device has undergone N2O plasma treatment. Experimental verification shows that the N2O plasma treatment enhances the thin film bonding strength, thereby suppressing the formation of temperature-dependent holes, which are generated above 400 K by oxygen atoms leaving their original sites. The N2O plasma treatment devices have better stability performance than as-fabricated devices. The results suggest that the density of defects for a-IGZO TFTs with N2O plasma treatment is much lower than that in as-fabricated devices. The N2O plasma treatment repairs the defects and suppresses temperature-dependent sub-threshold leakage current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.