Abstract

Silicon nanogaps are electrodes for connecting nanoscale elements to silicon technology. Two silicon electrodes are separated by a thin silicon dioxide layer, which is removed by selective etching to create a nanometer sized accessible gap. Parasitic gap currents with large instabilities occur after the etching. These are compared to the instabilities in ordinary MOS (metal oxide silicon) devices after soft breakdown. Clear similarities are seen when subjecting the devices to constant voltage stress, storing them and annealing them. We discuss a percolation-based model for the instable current, in which the percolation clusters are defects in the oxide surface created during the etching, or possibly contaminating residuals from the same process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.