Abstract

Vertical scanning white-light interferometry (SWLI) is a well-established method that is widely used in high precision surface topography measurement. However, SWLI results show characteristic slope-dependent errors due to dispersion effects and lateral chromatic aberrations of the optical imaging system. In this paper, we present methods to characterize these systematic errors related to dispersion and lateral colour. Lateral colour leads to field-dependent systematic discrepancies of the topography data obtained from the envelope position of a low-coherence interference signal and the data resulting from its interference phase. Hence, an erroneous fringe order obtained from the envelope position leads to a 2π phase jump and thus to a so-called ghost step in the measured topography. Our first approach to solve this problem is based on the measurement of a surface standard of well-known geometry. By comparison of measurement results related to the envelope position and the phase of SWLI signals, the systematic error is estimated and a numerical error compensation method is proposed. Both experimental and simulation results confirm the validity of this numerical method. In addition, using an improved design of a white-light Michelson interferometer we demonstrate experimentally that lateral chromatic aberrations and dispersion influences can be reduced also in a physical way. In this context, a conventional long working distance microscope objective is used which was not originally designed for a Michelson interference microscope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.