Abstract

Three bacterial strains, two identified as Pseudomonas stutzeri and one as a strain of cucurbit yellow vine disease bacterium, isolated from a foundry soil and a tannery, respectively, in Pakistan, were resistant to up to 1 mM chromate and anaerobically reduced Cr(VI) up to 100 μM. The highest removal was by P. stutzeri CMG463: 88 μmol l−1 (88% of that supplied; specific rate was 3.0 nmol mg−1 protein h−1), while 58 and 76 μmol l−1 (58% and 76%) were removed by P. stutzeri CMG462 and cucurbit yellow vine disease bacterium CMG480, respectively. These isolates were compared to strains isolated from an uncontaminated coastal site in the UK and designated as K2 (Pseudomonas synxantha) K3 (Bacillus sp.), and J3 (unidentified Gram-positive strain). Strain K3 was Cr-sensitive, partially lysed by Cr(VI), but had the highest removal of chromate anaerobically: 92 μmol l−1 (92% of that supplied) at a specific rate of 71 nmol mg−1 protein h−1. Analysis of cell sections using transmission electron microscopy with energy dispersive X-ray analysis showed intracellular chromium in P. stutzeri but the cucurbit yellow vine disease bacterium and the Bacillus sp. precipitated chromium extracellularly. The isolates from the Cr-contaminated sites did not remove more Cr(VI), overall, than Cr-unstressed bacteria, but their tolerance to Cr(VI) is potentially useful for bioremediation, particularly since other studies have shown that the two P. stutzeri strains can bioaccumulate Cu2+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call