Abstract

Spillways for medium and high head dams may be exposed to high velocity flows and the associated destructive phenomenon of cavitation. Cavitation may occur at rough spots in the surface of the chute or tunnel, at local discontinuities in the finished surface such as construction joints, and at locations along critical flow profiles having significant deviations from design specifications. This paper addresses, on the basis of a review of the literature, a method for preventing or reducing cavitation damage on spillways through the use of spillway aerators. While the ability of induced or forced aeration to reduce or eliminate cavitation has been known for many years, it is only in relatively recent times that the aeration mechanism has been used to this advantage on spillways subject to high velocity flow. The recent application of aerators to spillway design is related, in part, to the trend toward higher head dams and larger design unit discharge rates. Design considerations and criteria for spillway aerators are presented in the paper, and the use of physical hydraulic models to make determinations of aerator performance is discussed. The intent of the paper is to provide a document with sufficient detail and scope to be useful as a first resource for spillway design practitioners. Key words: aerator design, air entrainment, cavitation, design criteria, high dam, model – prototype comparison, physical hydraulic model, spillway, spillway aeration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.