Abstract
The transformation of aliphatic and aromatic acids to their corresponding alcohols, involving two reductive steps, is difficult to perform biologically due to its low redox potential. For this reason, the reduction of nonactivated carboxylic acids has been described for only a limited number of substrates and confined to a few microbial groups (fungi, clostridia, and archea). Nine species of cultured plant cells were able to reduce cinnamic, hexanoic, and octanoic acids to the corresponding primary alcohols with yields ranging from 2 to 80% (w/w). Aldehyde was detected only for three species during the reduction of cinnamic acid, confirming that the second reductive step from aldehyde to alcohol is faster than the first, from acid to aldehyde. Lyophilized cells from some of the cultures were used in buffer and solvent-water systems to obtain the reduction of carbonylic (ethyl acetoacetate) and carboxylic (cinnamic and hexanoic acids) groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.