Abstract
Data from the XGC1 gyrokinetic simulation are analyzed to understand the three-dimensional spatial structure and the radial propagation of blob-filaments generated by quasi-steady turbulence in the tokamak edge pedestal and scrape-off layer plasma. Spontaneous toroidal flows vary in the poloidal direction and shear the filaments within a flux surface, resulting in a structure that varies in the parallel direction. This parallel structure allows the curvature and grad-B induced polarization charge density to be shorted out via parallel electron motion. As a result, it is found that the blob-filament radial velocity is significantly reduced from estimates that neglect parallel electron kinetics, broadly consistent with experimental observations. Conditions for when this charge shorting effect tends to dominate blob dynamics are derived and compared with the simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.