Abstract
The Baltic Sea Action Plan (BSAP) requires tools to simulate effects and costs of various nutrient abatement strategies. Hierarchically connected databases and models of the entire catchment have been created to allow decision makers to view scenarios via the decision support system NEST. Increased intensity in agriculture in transient countries would result in increased nutrient loads to the Baltic Sea, particularly from Poland, the Baltic States, and Russia. Nutrient retentions are high, which means that the nutrient reduction goals of 135 000 tons N and 15 000 tons P, as formulated in the BSAP from 2007, correspond to a reduction in nutrient loadings to watersheds by 675 000 tons N and 158 000 tons P. A cost-minimization model was used to allocate nutrient reductions to measures and countries where the costs for reducing loads are low. The minimum annual cost to meet BSAP basin targets is estimated to 4.7 billion €.Electronic supplementary materialThe online version of this article (doi:10.1007/s13280-013-0484-5) contains supplementary material, which is available to authorized users.
Highlights
The Baltic Sea has suffered from severe effects of eutrophication for many decades
The novelty of the approach used in the Helsinki Commission (HELCOM) action plan (BSAP) is that it puts the ecosystem at the center, defining the status of the sea as we want it to be in the future, and focusing management decisions on this goal instead of taking the traditional approach of addressing pollution sources on a sector-by-sector basis, without directly linking abatement measures to the status of the Baltic Sea (Pyhala 2012)
When the Baltic Sea Action Plan (BSAP) was adopted, it was recognized that the calculated maximum allowable nutrient loads and the country-wise allocations of nutrient reductions were based on the best knowledge available, but that revised estimates would be necessary as soon as updated data and more advanced models became available
Summary
The Baltic Sea has suffered from severe effects of eutrophication for many decades. The Baltic Sea Action Plan (BSAP) of the Helsinki Commission (HELCOM) was adopted by all the coastal countries of the Baltic Sea and by the European Community in November 2007 (HELCOM 2007). When the BSAP was adopted, it was recognized that the calculated maximum allowable nutrient loads and the country-wise allocations of nutrient reductions were based on the best knowledge available, but that revised estimates would be necessary as soon as updated data and more advanced models became available. These revisions have been made (late fall 2013), but have not yet been approved by all HELCOM member countries. An advantage of the approach, in which models of different levels of complexity and spatial resolution are applied to the basin (see Electronic Supplementary Material, Fig. S1), is that it provides more robust insights into patterns of loading and response when the models yield similar results and provides insight into priorities for additional research when they disagree
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.