Abstract
For real-time optoacoustic imaging of the human body, a linear array transducer and reflection mode optical irradiation is preferably used. Experimental outcomes however revealed that such a setup results in significant image background, which prevents imaging structures at the ultimate depth limited only by the optical attenuation of the irradiating light and the signal noise level. Various sources of image background, such as bulk tissue absorption, reconstruction artifacts, and backscattered ultrasound, could be identified. To overcome these limitations, we developed a novel method that results in significantly reduced background and increased imaging depth. For this purpose, we acquire, in parallel, a series of optoacoustic and echo-ultrasound images while the tissue sample is gradually deformed by an externally applied force. Optoacoustic signals and background signals are differently affected by the deformation and can thus be distinguished by image processing. This method takes advantage of a combined optoacoustic/echo-ultrasound device and has a strong potential for improving real-time optoacoustic imaging of deep tissue structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.