Abstract

Because of obvious drawbacks including serious artefacts and noise in a decoded image, the existing wavefront coding infrared imaging systems are seriously restricted in application. The proposed ultra-precision diamond machining technique manufactures an optical phase mask with a form manufacturing errors of approximately 770 nm and a surface roughness value Ra of 5.44 nm. The proposed decoding method outperforms the classical Wiener filtering method in three indices of mean square errors, mean structural similarity index and noise equivalent temperature difference. Based on the results mentioned above and a basic principle of wavefront coding technique, this paper further develops a wavefront coding infrared imaging system. Experimental results prove that our wavefront coding infrared imaging system yields a decoded image with good quality over a temperature range from −40 °C to +70 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call