Abstract

BackgroundBioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. This technology has been proved to be cheaper, more efficient and environmentally friendly than roasting and high pressure moisture heating processes. So far the most studied microorganism in bioleaching is Acidithiobacillus ferrooxidans. There are a few studies about the benefit of metals of low value through bioleaching. From all of these, there are almost no studies dealing with complex minerals containing arsenopyrite (FeAsS). Reduction and/or elimination of arsenic in these ores increase their value and allows the exploitation of a vast variety of minerals that today are being underexploited.ResultsArsenopyrite was totally oxidized. The sum of arsenic remaining in solution and removed by sampling represents from 22 to 33% in weight (yield) of the original content in the mineral. The rest of the biooxidized arsenic form amorphous compounds that precipitate. Galena (PbS) was totally oxidized too, anglesite (PbSO4) formed is virtually insoluble and remains in the solids. The influence of seven factors in a batch process was studied. The maximum rate of arsenic dissolution in the concentrate was found using the following levels of factors: small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. It was also found that ferric chloride and carbon dioxide decreased the arsenic dissolution rate. Bioleaching kinetic data of arsenic solubilization were used to estimate the dilution rate for a continuous culture. Calculated dilution rates were relatively small (0.088–0.103 day-1).ConclusionProper conditions of solubilization of arsenic during bioleaching are key features to improve the percentage (22 to 33% in weight) of arsenic removal. Further studies are needed to determine other factors that influence specifically the solubilization of arsenic in the bioleaching system such as: pH, dissolved oxygen concentration, redox potentials, nature of concentrate and temperature among others. At. ferrooxidans was able to completely oxidize the minerals present during the arsenic bioleaching. Other elements present originally in the concentrate such as Zn, Sb, and Cu were also solubilized. The process of bioleaching is expected to be influenced by mechanisms that still need to be established due to the diversity of the minerals involved and by the presence of traces of metals in the concentrate. The increase in pulp density generates a decrease in the dissolved arsenic concentration. This decrease is greater in runs where air was not injected to the system. The maximum rate of arsenic dissolution in the concentrate was found using; small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. The effect of addition of ferric chloride during the arsenic bioleaching resulted in a decrease of the solubilized arsenic in the system. The presence of CO2 is associated to the decrease in arsenic dissolution.

Highlights

  • Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit

  • The increase in pulp density generates a decrease in the dissolved arsenic concentration

  • The effect of addition of ferric chloride during the arsenic bioleaching resulted in a decrease of the solubilized arsenic in the system

Read more

Summary

Introduction

Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. The term bioleaching refers to the bacterial conversion of an insoluble metal (usually a metal sulfide, e.g., CuS, NiS, ZnS) into a soluble form (usually the metal sulfate e.g., CuSO4, NiSO4, ZnSO4). When this happens, the metal is extracted into water [1,2]. At. ferrooxidans is able to use either ferrous iron or a wide variety of reduced inorganic sulfur species as an electron donor compounds. Energy is derived from the oxidation of reduced iron and sulfur compounds, including ferrous ion, sulfide, elemental sulfur and thiosulfate, with final oxidation products being ferric ion and sulfate [3,4]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call