Abstract

Background and Purpose —To clarify the relationship between apurinic/apyrimidinic endonuclease (APE/Ref-1), a multifunctional protein in the DNA base excision repair pathway, and delayed neuronal cell death associated with apoptosis, we examined the expression of APE/Ref-1 before and after transient global ischemia in rats. Methods —Global ischemia was induced by bilateral common carotid artery occlusion and hypotension. Expression of the APE/Ref-1 protein was evaluated by Western blot and immunohistochemical analyses. Apoptosis after global ischemia was observed by DNA electrophoresis and terminal deoxynucleotidyl transferase–mediated uridine 5′-triphosphate-biotin nick end labeling (TUNEL) staining. Results —Immunohistochemistry showed the nuclear expression of APE/Ref-1 in the control brains. Nuclear immunoreactivity of APE/Ref-1 was significantly decreased 2 days after 10 minutes of ischemia in the hippocampal CA1 subregion. Western blot analysis of a sample from the normal brains showed a characteristic 37-kDa band, which was reduced in the hippocampal CA1 subregion after ischemia. A significant amount of DNA fragmentation was observed at 3 days but not at 1 day after ischemia. Double staining with APE/Ref-1 and TUNEL clearly showed that the neurons that lost APE/Ref-1 immunoreactivity became TUNEL positive. Conclusions —Our data provide evidence that APE/Ref-1 decreased in hippocampal CA1 neurons after transient global ischemia and that this reduction precedes DNA fragmentation, which is destined to cause apoptosis. Our results suggest the possibility that a decrease of APE/Ref-1 activity and the failure of DNA repair may underlie the mechanism of apoptosis after transient focal ischemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call