Abstract

Chemically enhanced primary treatment (CEPT) has been considered for maximizing wastewater energy recovery by enhancing the carbon captured through the primary treatment. However, evaluating the potential of CEPT as a primary treatment process for removing antibiotic resistance genes (ARGs) in the influent from a wastewater treatment plant (WWTP) has seldom been investigated. In this study, CEPT was conducted to assess simultaneous reduction of 13 major targeted ARGs and common pollutants in wastewater compared with primary sedimentation alone (non-CEPT). CEPT processes using three types of coagulants (PACl, FeCl3 and alum) effectively reduced absolute abundance of ARGs and intI1 in the influent from municipal WWTP. Average log-removal of absolute abundance of ARGs was achieved up to 1.77 ± 0.41 along with 90% turbidity reduction compared to non-CEPT. Through the simultaneous reduction of ARGs and intI1 genes during a CEPT process, ARGs proliferation may be limited directly through reduction of antibiotic resistant bacteria or indirectly through decreasing the possibility of horizontal gene transfer by intI1 removal. Reduction of ARGs and intI1 was improved by increasing coagulants’ doses: abundances of residual ARGs under optimal dose conditions were similar, regardless of the different characteristics of coagulant types. The strongly positive correlation between reduction of turbidity/total phosphorus (T-P) and ARGs was explored, identifying that turbidity or T-P might be suitable indicators linked with variations in the abundance of ARGs during CEPT. As a result, CEPT may prove promising in efforts to control ARGs flowing into a WWTP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.